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Abstract
The development of efficient facial recognition systems on low-resource devices requires models to optimize
computational cost and performance for discrimination tasks. With this consideration, we introduce Adaptive
Feature-Logit Distillation (AFL-KD), a novel framework that combines logit imitation, mid-level feature
alignment, and weighted learning of losses with a specific focus on open-set face verification. During each
train step, AFL-KD continuously adjusts the relative weights of the cross-entropy, logit distillation, and
feature alignment components by matching the magnitudes of their gradients, thereby alleviating an upper
bound on the angular-margin error of the student model. In the process of compressing a 283 MB ResNet
teacher into a 7.2 MB MobileNet, AFL-KD achieves a negligible drop of 1.5 points in verification accuracy.

Empirical evaluations on the CASIAWebFace dataset show that distilled MobileNet achieves 95.7% accuracy,
77.0% recall, and an F1 score of 86. 9%, closely approaching the ResNet teacher (97.2% accuracy, 84.8%
recall) while shrinking the model size from 283.3 MB to 7.2 MB—a 39× compression. Compared with a
conventionally trained MobileNet baseline (87.3% accuracy, 62.8% F1 at 14 MB), the distilled model delivers
+8.4% absolute accuracy and +24.1% F1 improvements while halving the memory footprint. These results
confirm that knowledge distillation can yield highly accurate yet resource-efficient face recognition suitable
for mobile and embedded applications.

Keywords: Knowledge Distillation, Face Recognition, MobileNet, Lightweight Deep Learning, On-Device
Inference

1 Introduction
Facial recognition technology is now at an unprecedented level of accuracy, thanks to the use
of deep learning architectures that process vast sets of identity data. Prominent examples are
the face embedding unification method from FaceNet and the margin-based method based on
ArcFace, both of which achieve almost perfect recognition rates for benchmarked datasets, such
as LFW, thanks to the complex architectures of ResNet [1, 2]. However, such top-performing
face recognizers leverage tens of millions of parameters and require considerable computational
resources, making them difficult to deploy on low-end devices, such as smartphones or IoT devices
[3]. In applications such as mobile authentication and surveillance, the need for face recognition
in the device is felt to balance accuracy and efficiency. Achieving high accuracy using compact
models seems challenging because of the huge performance drop that accompanies the model
complexity and dimension decreases.
To alleviate this imbalance, researchers have explored various model compression techniques,
including network pruning, quantization, neural architecture search, and knowledge distillation
[4, 5]. Among them, knowledge distillation (KD) has emerged as a particularly promising paradigm
for model compression in deep learning settings [6]. In KD, a proficient teacher model transfers
its knowledge to a smaller student model by teaching it to mimic the teacher’s outputs or rep-
resentations. Hinton et al. [6] first introduced KD using softened teacher output probabilities
as "soft labels" to guide the training of the student, greatly improving the student’s ability to
generalize. The appeal of KD lies in its ability to boost the performance of a small model to that
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of a large model without requiring changes to the student architecture or inducing additional
inference costs at deployment time.
In the context of face recognition, knowledge distillation appears to be an appealing method
for obtaining compact and high-quality discriminative embeddings. A strong teacher model,
represented by a ResNet-100 that uses ArcFace [2], successfully encapsulates complex repre-
sentation features in its deeper layers. Conversely, a low-latency design small model, when
trained alone, suffers from significantly degraded verification performance because of its limited
capacity. Knowledge distillation allows the student model to be guided by the subtle knowledge
of the teacher—namely the teacher’s precise class probability distributions or intermediate feature
responses—in addition to the ground-truth identity labels, thus enhancing its discriminative ability.
Even with such developments, obtaining accurate on-device face recognition is still challenging.
One of the issues is the capacity disparity between a very large teacher and a much smaller
student, which makes plain distillation inefficient [7]. A case in point is a ResNet-100 teacher and
a MobileNet student, who possess very different representational capacities, sometimes needing
adaptive distillation methods or intermediate “teacher assistant” networks. Another issue is that
face recognition networks generate embeddings for open-set identity matching, so the distillation
must maintain the teacher’s features’ inter-class discriminative capability. Recent research started
to tackle such challenges with face recognition specialized distillation methods (e.g., distilling
pairwise relation knowledge to optimize verification measures directly [8]).

2 Literature Review
Knowledge distillation is now a central approach in model compression research, backed by a vast
body of research examining the efficient transfer of knowledge from complex models to simpler
ones. The early work on model compression by Buciluă et al. [4] proved that the predictions made
by a set of ensemble models could be “compressed” into a single, simpler model, foreshadowing
the idea of knowledge distillation. Later, Hinton et al. [6] extended this principle, proposing
logit-based distillation where a student network is learned such that it matches the softened
output probabilities (logits) of a larger teacher network. This approach allows the student network
to learn the teacher’s implicit knowledge for class similarities: even though the teacher is highly
confident that the correct class is class k , the lower probabilities given for other classes provide
essential information on feature relationships. By minimizing the KL-divergence or cross-entropy
loss between teacher and student outputs, the student gains the capacity to mimic the functional
behavior of the teacher.
Logit distillation worked well for classification tasks, and follow-up studies have continued to
strengthen this method. For instance, Zhao et al. [9] pointed out that standard KD loss combines
target-class information from the teacher with information from the non-target classes, potentially
limiting the student’s ability to learn. They recommended the separability of KD loss (DKD) into
individual terms for the target class as well as for non-target classes, enhancing the exploitation
of the information-rich distribution of non-target logits. Similarly, several studies have changed
the distillation objective for enhancing learning from the probabilities of non-target classes or
re-weighting the teacher’s logits, yielding better-performing students on CIFAR-100 as well
as ImageNet benchmarks [10]. Yang et al. [11] took a theoretical approach by reformulating
the KD loss and introducing a normalized KD (NKD) objective, which achieved state-of-the-art
results on ImageNet. These gains demonstrate the important impact the way the teacher’s output
distribution is distilled has on the performance of the student.
In addition to logits, a large body of research is devoted to feature-based distillation. Romero et
al. [12] were among the first to pursue this direction with FitNets, which guides the intermediate
feature maps of the student model to match those of the teacher model via a hint-based regression
loss. By providing supervision at hidden layers, FitNets enabled the successful training of thin
deep student networks that would be difficult to train otherwise. Zagoruyko and Komodakis [13]
introduced an attention transfer (AT) approach that forces the student to mimic the teacher’s
attention maps (spatial activation patterns) instead of the raw features themselves, thus capturing
a notion of spatial importance.
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These methods have been widely used and built upon: teachers can provide guidance in many
different ways, including neuron activations, attention mechanisms, or even Gram matrix repre-
sentations of feature correlations. The general goal is to impart the teacher’s rich representational
capabilities of hidden layers to the corresponding student model layers. For example, Park et
al. [8] introduced relational knowledge distillation (RKD), which is not concerned with matching
features directly but, rather, the relations between feature vectors—namely, the distances and
angles between sample pairs in the teacher’s embedding space. By mimicking these relational
measures, the student effectively preserves the structural relationships learned by the teacher,
which is especially relevant for metric learning-oriented tasks like face recognition. In another
direction, Chen et al. [14] proposed DarkRank, where the student is taught to mimic the ranked
similarity list between samples of the teacher (effectively distilling the teacher’s organization of
samples according to distance). These relational and metric-oriented distillation methods are
especially beneficial for face recognition, as they emphasize the pairwise similarity knowledge
that underlies verification performance.

A relevant framework includes both self-distillation as well as online distillation, where teacher
and student differences blur. In self-distillation, a neural network is able to learn from its own
architecture—such as by using deeper layers as “teachers” for the previous layers, or through
iterative training where a model trains a new version of itself, a notion described as the “born-
again” approach [7]. Furlanello et al. [7] illustrated a network, even one not using an external
teacher, can improve its accuracy across generations by retraining on its own outputs. Similarly,
Zhang et al. [15] proposed Deep Mutual Learning, where an ensemble of student models undergo
interactive learning by sharing knowledge with one another in real time, independent of any
individual teacher. These methods hint that the benefits of knowledge distillation (KD) are not
necessarily restricted to the traditional teacher-student model—knowledge sharing between
peers, or within the training processes of one model—can provide higher quality, often as a
byproduct of the regularization effect of soft targets.

The core element of the distillation process is the difference in capacity between the student and
the teacher. Cho and Hariharan [7] demonstrated that where the teacher has much wider capacity,
the student could have difficulty with the learning process, perhaps being outperformed by a
knowledge distillation model with no prior knowledge. One suggestion is for a teaching assistant
of intermediate capacity to perform as an intermediary [15]. In face recognition, Jingzhi Li et
al. [16] addressed the problem by enforcing constraints within the teacher feature space during the
distillation process, enhancing student compatibility, effectively reducing the difference between
their respective capacities. Their student model, learned only by feature-level supervision, with
no access to identity labels, outperformed models that adopted direct KD from the original
teacher. This is reflective of a common thread with much current research: the appreciation that
developing student-teacher synergy will improve the effectiveness of the transfer of knowledge.

The curriculum or multi-step distillation techniques have also drawn attention. Boutros et al. [17]
introduced a multi-step KD approach where teacher knowledge is transferred through successive
steps of the student training regime rather than being transferred at a single point. Their research
supports that incremental transfer learning had a positive influence on the final accuracy of a
simplified face recognition system.

Though knowledge distillation techniques were initially designed and evaluated within the frame-
work of object general classification, their usage has gradually extended into the domain of face
recognition, followed by task-specific developments. An essential application involves the usage
of knowledge distillation (KD) for teaching the compact face recognition model on the same
training set as a larger model, utilizing the teacher’s class posterior probabilities or its learned
feature embeddings as guidance sources.

Later, more sophisticated techniques have emerged. Huang et al. [18] presented an evaluation-
driven knowledge distillation (EKD) framework for face recognition, designed specifically for
solving the differences of the teacher’s and student’s performances on the verification task.
Instead of forcing the student to match the teacher’s performance on all training samples, they
identified critical pairwise relationships (image pairs that the student classifies incorrectly while
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the teacher classifies them correctly) that affect variations of the false rejection or false acceptance
rates. By capturing such specific relational features by a rank-based loss function, their student
learned decision boundaries better and produced higher verification rates compared with standard
KD strategies.

Another research thread addresses distillation under degraded input modalities: Shin et al. [19]
tackled low-resolution face recognition by using a high-resolution face model as teacher and a
low-resolution model as student. The authors introduced a knowledge distillation loss based on
attention similarity, allowing for the alignment of the student’s attention with that of the teacher’s
attention maps. This procedure teaches the student how to attend to face images, including
low-resolution ones. The method greatly improved the student’s accuracy for small face images,
outperforming other methods for super-resolution compensation. The scenario of asymmetric
inputs—where the teacher is shown a high-res image while the student only receives its low-res
version—constitutes a version of asymmetric knowledge distillation widely researched within the
scientific literature, mostly within the framework of the distillation of vision models that make
use of additional metadata or higher-quality inputs [20].

Ensemble knowledge distillation is a major direction of research in the field. Instead of a single
student model, using an ensemble of different face recognition models enables knowledge transfer
to a student model. Xu et al. [21] proposed a probabilistic framework for knowledge distillation
for face ensembles by treating the output of the ensemble as a probability distribution. Such a
framework allows for the inclusion of model uncertainty in the distillation process. By distilling
an expert ensemble of face recognizers into a single student model, they were able to obtain
student evaluation metrics strongly correlated with the ensemble while greatly saving runtime
costs. Probabilistic or Bayesian-based distillation mechanisms not only allow for the transfer of
average predictions but also capture the diversity among teacher models, leading to the creation
of a more robust student model.

In the field of face recognition, the development of student architectures continues to be an
important complement to knowledge distillation (KD). Student architectures like MobileNets
and their variants—including MobileNetV2, V3, and MobileFaceNets [3]—are commonly chosen
as lightweight baseline models for face recognition due to their use of depthwise-separable
convolutions and low parameter counts. Some research uses neural architecture search (NAS) to
systematically determine the best lightweight architecture for face recognition, then applies KD
to improve performance. One such example is the PocketNet framework proposed by Boutros
et al. [17]; they used NAS to create extremely lightweight convolutional neural network (CNN)
architectures, measuring less than 1MB in size, specifically for face embedding generation, then
trained them via multi-step knowledge distillation from a strong ArcFace teacher. The resulting
PocketNet models attained state-of-the-art accuracy among comparably sized models on several
face recognition benchmarks. This illustrates the joint optimization of architecture and KD, where
the use of an effective teacher can propel an otherwise well-designed small student model beyond
results obtainable via standard training procedures.

Furthermore, the recent study AdaDistill by Boutros et al. [22] integrated knowledge distilla-
tion into the widely used ArcFace training framework by distilling class centers. Their approach
consisted of the transfer of the teacher’s class prototypes—weight vectors within the final classi-
fication layer corresponding to each identity, serving as class centers in the embedding space—to
the student model’s classification layer. The student is trained with a margin-based softmax
loss mechanism, just like ArcFace, but using the teacher’s class centers as reference points, with
adaptive penalties applied to the student for deviations from the teacher’s class centers. This is
specifically aimed at preserving each identity’s center feature integrity within the student model,
improving verification performance on difficult benchmarks like IJB-B and IJB-C compared to
vanilla KD methods.

Data-centric methods powerfully enhance face recognition distillation processes. In situations
where there is no access to vast authentic face datasets owing to privacy considerations, among
other issues, generating synthetic data can be leveraged alongside knowledge distillation (KD)
as a strategy. Otroshi-Shahreza et al. [23] introduced SynthDistill, where a pretrained face
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generator (StyleGAN) generates face images synthesized manually, with no identity labels. A
teacher network, pretrained on authentic datasets, creates embeddings of such synthesized faces,
whereas a student network is tasked with aligning its output with the embeddings via distillation.
Utilizing a dynamic sampling approach where challenging samples—where there is inconsistency
between the teacher and student—have higher priority, they considerably improved the student’s
performance based on purely synthetic training data. The student registered a 99.5% accuracy
mark on LFW, based solely on training using synthetic faces, a level that is very close to that of
models created based on real data; such an achievement highlights the effectiveness of KD where
there is limited access to sufficient material.

Other data augmentation strategies, including generating occluded, masked face images, have
further been used for reinforcing the student learning process [20, 21]. For instance, using
knowledge distillation for masked face recognition tasks—where the teacher assists the student
with interpreting incomplete facial information—can help ensure continuity of accuracy where
individuals are wearing face masks. Such methods widen the adaptability of KD-trained face
models for more robust real-life applications.

In recent years, a range of toolkits have appeared to support reproducible and high-quality face
recognition research, as well as knowledge distillation pipelines. One of the most influential of
these is Face.evoLVe by Zhao et al. [24], which is an extensive library for face recognition that
provides modular implementations for model training, evaluation, and visualization on a variety of
backbones, datasets, and loss functions. Importantly, Face.evoLVe supports both teacher-student
architectures and a variety of loss functions specifically designed for distillation, such as center
loss, ArcFace, and CosFace. This platform has significantly lowered the barriers to implementing
and benchmarking knowledge distillation for face recognition, with particular benefits for novice
researchers or practitioners concerned with on-device deployment. By supporting flexible KD
configurations and cross-platform benchmarking—such as LFW, CFP-FP, AgeDB, and IJB-series
datasets—Face.evoLVe enables streamlined evaluation of distilled student models against large
teacher models, improving reproducibility and fairness in face recognition compression studies.

Table 1. Knowledge distillation types, model pairs, and contributions in face recognition.

Distillation Type Teacher→ Student Key Contributions

Logit (soft labels) Ensemble→ Small Introduced KD via softened outputs; improved classi-
fication; set baseline for FR [6].

Relational (pairwise) ResNet-50 → Mo-
bileNet

Focused on pair similarity; improved TAR@FAR; re-
duced teacher-student gap [18].

Attention maps HR→ LR +5% boost on tiny faces via attention alignment [19].
Embedding + Reverse ResNet-100→Mobile-

FaceNet
Label-free KD; reverse direction; outperformed prior
embedding methods [16].

Logit (ensemble) ResNet ensemble →
ResNet-18

Student matched ensemble performance; faster infer-
ence [21].

Multi-logit + NAS ResNet-100→ Pocket-
Net

0.92M param model; 95% IJB-C accuracy via NAS +
KD [17].

Class centers + Logit CurricularFace → Effi-
cientNet

AdaDistill; improved margin loss; +1–2% TAR @ low
FAR [22].

Logit + Embedding ResNet-50 → Mo-
bileNet (synthetic)

KD from synthetic data; 99.5% LFW; no real data
used [23].

Our study adopts similar evaluation frameworks and aligns with the reproducibility standards
advocated by Face.evoLVe. Table 1 provides a comparative summary of the main knowledge
distillationmethods used in face recognition tasks. The table draws out their key features, including
the transferred knowledge, as well as the student, teacher, their respective models, and distinctive
outputs. The evidence is that such methods range from standard logit distillation methods to
advanced relational and feature-level methods, used for different purposes (i.e., general face
identification, low-resolution face handling, ensemble distillation, etc.). This series of studies
confirms that by carefully modifying knowledge distillation, it immensely helps develop efficient
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face recognition models with excellent accuracy.

3 Proposed Method
In this section, we describe our knowledge-distillation framework for transferring the discrim-
inative power of a deep ResNet teacher into a lightweight MobileNet student. The goal is to
preserve high face-verification accuracy while drastically reducing model size and inference cost,
making the student suitable for on-device deployment.

3.1 Methodology Overview
For the achievement of accurate and efficient facial recognition on different devices, we propose
a knowledge distillation (KD) workflow oriented toward transmitting the representational power
of a deep ResNet-teacher network into a lighter MobileNet-student network. The key goal is
to preserve high recognition accuracy while significantly reducing both the computational load
and memory requirements of the model, hence making it deployable on resource-constrained
environments, e.g., mobile devices or embedded systems.
The proposed framework includes three core components: (1) logit value distillation, (2) alignment
of intermediate features through a projection head, and (3) adaptive loss weighting. Together,
these allow the student model to learn not only from the semantic outputs of the teacher, but
also from internal feature representations.
In more detail, the student learns to mimic the softened output distributions of the teacher while
aligning intermediate feature representations layer-by-layer. A set of weighted loss functions
governs this multi-level transfer, balancing efficiency and accuracy.
We define teacher and student output logits as follows: for an input image x, the teacher produces
z(T ) = fT (x) and the student z(S ) = fS (x). To reveal the teacher’s dark knowledge, we apply a
temperatureT > 1 to soften both output distributions:

p
(T )
i

=
exp(zi /T )∑
j exp(z j /T )

(i indexes the logits of either model). (1)

The student is then guided tomatch these softened probabilities byminimizing the logit-distillation
loss:

LKD = T 2 KL
(
p
(T )
T ∥ p (S )T

)
, (2)

where KL(· ∥ ·) denotes the Kullback–Leibler divergence. The T 2 factor balances the gradient
magnitudes.
Beyond final-output alignment, we also enforce similarity between intermediate feature maps.
Denote the feature maps of the teacher and student at layer ℓ as φ (T )

ℓ
and φ

(S )
ℓ

, respectively. Let
P be a small trainable projection head mapping the student to the teacher’s feature space. The
feature-alignment loss is defined as:

Lfeat =
1

L

L∑
ℓ=1




φ (T )ℓ
− P (φ (S )

ℓ
)



2
2
, (3)

where the squared error is averaged over L selected layers.
To ensure correct classification, we include the standard cross-entropy loss LCE against the
ground-truth labels y. The total loss integrates all three components:
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L = αLCE + βLKD + γLfeat, with α + β + γ = 1. (4)

This integrated approach allows the student to acquire both semantic and structural knowledge
from the teacher, improving generalization without increasing model complexity.

3.2 Flowchart and Pseudocode of the Proposed Method
The distillation procedure is outlined in Figure 1 (flowchart) and in Algorithm 1 (pseudocode),
providing an overall illustration of the operational stages of the proposed methodology.

Figure 1. Flowchart of the proposed knowledge distillation framework.

3.3 Teacher-Student Architecture
The teacher model, ResNet, is initially pre-trained with massive datasets, leaving it with strong,
consistent representations that can be used as guidance effectively. To provide stable, consistent
guidance, the teacher is not altered. On the other hand, the student model, MobileNet, is much
lighter and is incrementally refined during the training process to closely mimic the teacher.
Logit distillation enables the student model to learn complex decision boundaries by matching its
softened logits to those of the teacher model, thus improving its competence in distinguishing
between similar classes. Temperature hyperparameter plays a central role in revealing these subtle
differences by controlling the smoothness of the resulting output probability distributions.
Intermediate Feature Alignment: Intermediate feature alignment makes it easy for the student to
learn subtle structural properties of the teacher’s internal representations. The flexible projection
head effectively projects the student’s intermediate features into the teacher’s feature space,
establishing structural alignment with semantic consistency in the feature domain.
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Algorithm 1 Pseudocode of Proposed Method with Adaptive Weights
1: // Initialize teacher (frozen), student, and projection head
2: teacher.eval()
3: student.train()
4: proj_head = ProjectionHead()
5: // Temperature for KD
6: T ← 4
7: // Initialize adaptive weights uniformly
8: α0 ← 1

3 , β0 ← 1
3 , γ0 ← 1

3
9: for epoch = 1 to num_epochs do

10: for each batch (x , y ) in dataloader do
11: // Forward pass
12: (zT , f eat sT ) ← teacher(x , return_feats=True)
13: (zS , f eat sS ) ← student(x , return_feats=True)
14: // Cross-entropy loss
15: lossCE ← CrossEntropy(zS , y )
16: // Logit distillation loss
17: pT ← softmax

(
zT /T

)
18: pS ← softmax

(
zS/T

)
19: lossKD ← KL

(
pT , pS

)
×T 2

20: // Feature-alignment loss
21: lossFA ← 0
22: for each pair fT , fS in zip(f eat sT , f eat sS ) do
23: lossFA ← lossFA +MSE

(
fT , proj_head(fS )

)
24: end for
25: lossFA ← lossFA / |f eat sT |
26: // Compute gradient norms
27: gCE ←



+θS lossCE




28: gKD ←


+θS lossKD




29: gFA ←



+θS lossFA




30: // Update adaptive weights
31: α : β : γ ← g −1KD : g −1CE : g −1FA
32: s ← α + β + γ
33: α ← α/s, β ← β/s, γ ← γ/s
34: // Total loss and backprop
35: loss← α lossCE + β lossKD + γ lossFA
36: optimizer.zero_grad()
37: loss.backward()
38: optimizer.step()
39: end for
40: end for

Adaptive loss weighting is a method that allows the dynamic assignment of importance to every
part of the loss function. Through tuning the hyperparameters α , β , and γ, the student network
is allowed to prioritize the learning of knowledge relating to more difficult or crucial parts at
different training stages, thus effectively enhancing the overall training efficiency and ultimate
accuracy.

The flowchart shown in Figure 1, as well as the pseudocode shown in Algorithm 1, together depict
the operational architecture of the suggested distillation approach. When an image is fed into
the system, both the student (MobileNet) and teacher (ResNet) networks process it in parallel.
The teacher model, retained constant during training, generates a set of intermediate feature
maps as well as logits reflecting deep semantic and structural information. In parallel, the student
network generates its own intermediate features and logits. Then, the logit distillation part aligns
the student’s as well as the teacher’s softened logits with respect to a KL divergence-based
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loss function, allowing the student model to absorb detailed inter-class variations as imbibed by
the teacher. In parallel, the student’s intermediate feature maps are passed through a learnable
projection head, matched with the respective feature of the teacher, using a mean square error
loss for representation transfer of spatial as well as structural representations. These two loss
parts are combined with the cross-entropy loss of the student prediction with respect to the actual
ground-truth labels. This cumulative loss, adaptively weighted, is used for updating the weights
of the student model. This tightly integrated procedure, as described through the pseudocode,
ensures that the student progressively gains not only the final output behavior, but the internal
representations of the teacher as well. The training loop defines the cycle of forward pass, loss
computation (logit, feature, as well as classification loss), as well as weight update procedures
necessary for iterative improvement of the student model.

4 Results and Discussions
In this section, we present a comprehensive evaluation of our proposed method (AFL-KD) on
standard face verification benchmarks. First, we compare our distilled MobileNet against the
ResNet teacher and strong baseline models to quantify the effectiveness of joint feature-logit
distillation and adaptive weight learning. We then analyze the dynamics of the learned loss
weights and examine the precision–recall trade-offs via threshold sweeps. Finally, we discuss the
implications of our findings for on-device face recognition and highlight the key strengths and
limitations of AFL-KD.

All face images are first detected and tightly cropped using MTCNN and then resized to 112× 112
pixels. We normalize pixel values to the [0, 1] range and apply mean–standard-deviation nor-
malization using ImageNet statistics (µ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225]). During
training, each image undergoes a random horizontal flip with 10% probability and color-jitter
augmentation (brightness, contrast, and saturation each varied by ±0.2).

Our teacher network is a pre-trained ResNet with ArcFace output heads, frozen in evaluation
mode throughout distillation. The student network is a MobileNet backbone augmented by a
lightweight projection head. We set the distillation temperatureT = 4 for softened-logit matching.

We train the student end-to-end using stochastic gradient descent with momentum 0.9. The initial
learning rate is 0.001 Training runs for 50 epochs with a batch size of 3×64 on the CASIA-WebFace
dataset, leveraging eight NVIDIA GTX 4090 GPUs; no gradient accumulation is employed. We
measure face verification performance with Accuracy, Precision, Recall, and F1-score. Let TP, TN,
FP, FN denote true positive, true negative, false positive, and false negative counts. Accuracy
is the ratio of correct predictions, both positive and negative, to the total predictions made,
expressed mathematically as [25]:

Accuracy = T P +T N

T P +T N + F P + F N (5)

Precision, also called the positive predictive value, measures the proportion of true positives to
all positives predicted, expressed as:

Precision =
T P

T P + F P (6)

Recall, or sensitivity, is the proportion of true positives to all actual positives, written as:

Recall = T P

T P + F N (7)
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The F1-score, which is used to describe the balance between precision and recall, is calculated by
taking the harmonic mean of the two measures:

F1-Score = 2 × Precision × Recall
Precision + Recall (8)

Together, these measures provide a complete picture of the classification ability of our models.
The proposed face verification performance of the teacher and student models was evaluated
using the CASIA-WebFace dataset by analyzing decision thresholds systematically. The teacher
network employs the pretrained ResNet weights provided by the face.evoLVe repository [24],
while the MobileNet student is first trained on VGGFace2 [3] and subsequently distilled from the
teacher. The evaluations were conducted on a workstation with an NVIDIA GTX 4090 graphics
processing unit, 64 GB of random access memory, and a 2 TB solid-state drive. Plots of Accuracy,
Precision, Recall, and F1-score against the match threshold for the ResNet teacher model, the
MobileNet student model after distillation, and the baseline (vanilla) MobileNet are shown in
Figures 4–7. The peak (optimum) and average measures over the range of thresholds from 0.30
to 0.70 are both given to enable a complete comparison.

Figure 2. Accuracy vs. Threshold on CASIA-WebFace for ResNet (Teacher), Distilled MobileNet,
and Baseline MobileNet.

As shown in Figure 2, the teacher model (ResNet) consistently has the highest verification accuracy
at all thresholds, reflecting its better discriminative power. At the optimal operating threshold
(0.30 in this evaluation), the teacher achieves an accuracy of about 97.2%, while the distilled
MobileNet achieves about 95.7%, and the baseline MobileNet only reaches a much lower peak
of about 87.3%. Note that the baseline’s accuracy at very permissive thresholds is degraded
by a higher frequency of false positives (e.g., only 71.9% at threshold 0.30), then improves to a
peak around threshold 0.55 before decreasing. In contrast, the distilled student sustains a high
accuracy level (above 90%) over a very wide range of thresholds. This indicates that knowledge
distillation has significantly improved the student’s overall accuracy in discriminating between
genuine and imposter pairs, making it much more robust than the conventional MobileNet.
Figure 3 depicts the precision of each model at multiple threshold rates. The precision rate of
the teacher model is 100% (no false acceptances) at all the highest thresholds shown. It can be
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seen that the distilled MobileNet achieves remarkably high precision, with around 0.997 at the
lower threshold of 0.30, as well as the optimal score, which is 1.000, at thresholds of 0.35 or
more. It can be seen that the teacher model, along with the distilled student, clearly displays no
errors that produce the "match" result in this analysis at the lower thresholds, too. As compared
to the baseline MobileNet, the baseline model, however, commences at a precision of only 38.4%
at the threshold of 0.30 (meaning that the majority of the matched predictions are wrong at
this threshold) and rises to the best mark at the threshold of 0.70 at 85.1%. However, even at
the best performance, the baseline model does not manage to reproduce the flawless precision
reported by the two other models. This gap reflects the calibration advantage that distillation
provides, where the student model attains the proficiency of the teacher in avoiding false positives
efficiently. Deployment of face recognition technology requires such precision; false acceptances
can produce highly negative implications to the application, such that critical concerns can arise
due to the errors created by such false acceptances.

Figure 3. Precision vs. Threshold on CASIA-WebFace for ResNet (Teacher), Distilled MobileNet,
and Baseline MobileNet.

The recall plots in Figure 5 provide another perspective on precision. With a permissive threshold
of 0.30, the baseline MobileNet obtains its highest true positive rate (TPR ≈ 87.3%) by covering
potential matches broadly, albeit at the cost of very low precision, as previously observed. The
teacher’s recall at the same threshold is somewhat lower (84.8%), reflecting a more conservative
boundary that yields zero false positives. As the threshold is tightened, recall decreases for all
models; however, the teacher maintains the highest recall at any fixed level of false positives. For
example, at a high-precision operating point (threshold = 0.70), the teacher still recovers ≈ 25.4%
of actual positive pairs, whereas the distilled student recovers ≈ 10.5%, and the baseline ≈ 21.1%.
This demonstrates that the baseline cannot achieve both high recall and high precision simulta-
neously. By contrast, the distilled MobileNet tracks the teacher more closely: it sacrifices some
recall compared to the baseline at loose thresholds but achieves substantially better precision,
resulting in a higher overall F1 score. This indicates that distillation steers the student toward
more discriminative features, selecting true matches nearly as selectively as the teacher.

These observations are reinforced by the F1-score curves in Figure 7. The teacher attains its
maximum F1 of 0.917 at a low threshold, owing to perfect precision (zero false positives) combined
with high recall. The distilled MobileNet reaches an F1 of 0.869, which—while below the teacher’s
peak, significantly surpasses the baseline’s best F1 of 0.628. Across all thresholds, the distilled
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Figure 4. Recall vs. Threshold on CASIA-WebFace for ResNet (Teacher), Distilled MobileNet,
and Baseline MobileNet.

model’s F1 remains substantially higher than that of the baseline. At threshold 0.30, the distilled
model achieves F1 ≈ 0.87, compared to the baseline’s ≈ 0.53 due to its low precision; even at
the baseline’s optimal threshold (0.45), its F1 of 0.628 falls well short of the distilled model’s
performance. This marked improvement confirms that distillation yields a student model with a
superior precision–recall trade-off relative to a conventionally trained equivalent.

Figure 5. F1Score vs. Threshold on CASIA-WebFace for ResNet (Teacher), Distilled MobileNet,
and Baseline MobileNet.
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Table 2. Verification Performance on CASIA-WebFace

Model Accuracy (Best/Avg) F1 (Best/Avg) Precision (Best/Avg) Recall (Best/Avg)
ResNet-Teacher 97.2% / 92.8% 91.7% / 73.7% 100% / 100% 84.8% / 61.0%
MNet-Distilled 95.7% / 89.9% 86.9% / 58.5% 100% / 100% 77.0% / 44.9%
MNet-Base 87.3% / 83.1% 62.8% / 54.4% 85.1% / 63.5% 87.3% / 57.8%

To summarize the performance across thresholds, Table 2 compares the best (peak) and average
values of each metric for the three models. The averages are computed over the range of
thresholds shown (0.30–0.70), reflecting overall robustness across operating points. The distilled
MobileNet bridges much of the gap between the powerful ResNet teacher and the baseline
MobileNet. It achieves significantly higher accuracy and F1 than the baseline on average, and its
peak performance is very close to the teacher’s. Notably, both teacher and distilled student attain
perfect precision at their best operating points (and on average over the range, neither produced
any false positives), whereas the baseline’s best precision is 85%, and it averages only 63.5%
precision. In terms of recall, the baseline can match the teacher’s maximum recall in absolute
terms (since at threshold 0.30 the baseline had slightly higher TPR), but the baseline’s precision at
that point is so poor that it is not a usable operating point. The distilled model’s recall is a bit lower
than the baseline’s at peak, indicating a slight reduction in coverage of true matches, but this is a
reasonable trade-off given its overwhelming gain in precision. Overall, the distilled MobileNet
delivers a balance of high precision and good recall much closer to the teacher, whereas the
baseline model would require extensive tuning or a sacrifice in one of the metrics to approach
acceptable verification performance. Along with its better predictive performance, the method
used in this research leads to significant improvements in model compression. The method
necessitates a memory allocation of 283.3 MB, corresponding to the large number of parameters
involved, while the distilled MobileNet only requires 7.2 MB This compression level about 40
times smaller than the teacher model demonstrates the efficacy of the distillation process in
deploying models on resource-limited devices. The ability to greatly compress the model with
minimal performance loss is representative of the perfect balance between model compactness
and working effectiveness. This study substantiates the fact that knowledge distillation can
achieve state-of-the-art compression results for facial recognition models. Overall, the distilled
MobileNet herein is an effective, efficient, and extremely compact face recognition solution on
diverse devices, successfully bridging the gap between the accuracy of larger models and the
efficiency of smaller alternatives.

For context, we compare AFL-KD against three popular Knowledge Distillation (KD) frameworks
RKD [8], AdaDistill [22], andDecoupled KnowledgeDistillation (DKD) [9],on the reported accuracy
for LFW verification under a consistent ArcFace-based protocol. RKD, which enforces relational
feature-space restrictions without logit imitation, achieves an accuracy of 94.8% (–3.7 pp relative
to the 98.5% accuracy of the ResNet-100 teacher). AdaDistill, which adjusts only the classification
center term against ArcFace margins, suggests an accuracy of 95.1% (–3.4 pp). DKD, which
decouples the target and non-target logit objectives, achieves an accuracy of 95.3% (–3.2 pp). In
comparison, our method, AFL-KD—incorporating softened-logit imitation, feature-alignment, and
adaptive loss balancing—brings the MobileNet student to an accuracy of 97.0% (–1.5 pp).

5 Conclusion
This study presents a robust on-device face recognition framework via knowledge distillation,
transferring a 283 MB ResNet teacher into a 7.2 MBMobileNet student. On CASIA-WebFace, the
student attains 95.7% accuracy, 77.0% recall, and an F1-score of 86.9%, versus the teacher’s 97.2%
accuracy and 84.8% recall. These results confirm that AFL-KD closes most of the teacher–student
gap (only a 1.5 pp drop in accuracy) while achieving 39× compression and no additional inference
cost—demonstrating its efficacy for resource-constrained, high-accuracy face verification.

In terms of deployment, the optimized model exhibits substantial compression improvement; at
themodest size of only 7.2MB, it is fully 40 times lighter than the ResNet teacher model and about
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half the size of the regular MobileNet, which makes it very suitable for mobile and embedded
systems. The balance thus established among performance and efficiency in this regard supports
the fact that knowledge distillation is an efficient approach to deploying deep face recognition
models into constrained-resource settings. To sum up, the results of the present study support
the growing perception that, with careful design, knowledge distillation can make deep face
recognition deployable on edge devices—thereby enabling privacy-respecting, low-latency, and
reliable identity authentication to be achieved across many real-world applications.
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