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Abstract
The aim of the study is to explore the use and integration of Artificial Intelligence (AI) and Machine Learning(ML) technologies within the SESAR projects. Using a qualitative content analysis approach, this researchsystematically reviewed 232 SESAR project documents and identified 37 projects that directly applied AI/MLmodels and techniques. These selected projects were further examined to categorize their focus into fourkey areas: situational awareness and human-AI teaming; trajectory prediction, traffic flow management, andnetwork optimization; automation in communication, navigation, surveillance (CNS), and safety monitoring;and AI integration and ethical governance. The study contributes to the literature by offering a structuredframework that highlights the current applications of AI/ML in air traffic management innovation, while alsoidentifying emerging trends and potential future research directions.
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1 Introduction
Artificial Intelligence (AI) possesses transformative potential across industries by introducing novel opportu-nities for innovation and challenging existing operational paradigms [1]. Beyond its sectoral impact, AI alsoplays a critical role in enhancing technological innovation capabilities within strategic emerging industries byreducing funding constraints and stimulating research and development investments [2]. Current markettrends indicate exponential global growth in the AI sector. In 2024, the market size was valued at USD239.41 billion, and it is projected to expand to USD 328.47 billion in 2025, ultimately reaching USD 4124.10billion by 2033. This trajectory corresponds to a compound annual growth rate (CAGR) of 37.20% over the2025–2033 period. The regional expansion of the global AI market exhibits considerable variation acrosscontinents, with the Asia-Pacific region emerging as the dominant actor, supported by a projected growthrate of 49.3%, primarily driven by AI applications in the finance and security sectors in countries such asChina and India. North America followed with a growth rate of 33.2%, underpinned by advancements inbiometric technologies, voice recognition, and autonomous systems. In parallel, Europe has demonstratednotable progress, particularly through the adoption of virtual assistants and biometric security applications,with countries like Germany and the United Kingdom leading such initiatives. Türkiye has also increasedits AI investments in unmanned aerial vehicles systems to enhance security. In Latin America, Brazil hasincorporated AI technologies to improve public safety, while in the Middle East and Africa, AI adoption isconcentrated in asset management and surveillance, frequently supported by partnerships with Chinesetechnology companies [3].
Among the various industries impacted by AI, the aviation sector stands out as a key area where thesetechnologies are rapidly reshaping operations and addressing longstanding challenges. With its multifacetedoperational demands, aviation presents unique opportunities for AI-driven solutions aimed at enhancingefficiency, sustainability, and safety. The sector faces critical issues such as rising fuel prices, environmentalpressures, growing customer expectations, and the demand for autonomous systems to improve productionefficiency and reduce costs [4]. In response, AI technologies such as machine learning (ML), predictiveanalytics, robotics, big data analytics, natural language processing (NLP), and computer vision are being widelyimplemented across various aviation functions, from flight planning and operations to maintenance andsafety management [5]. By enabling real-time analysis and automation, these tools enhance decision-making,mitigate operational risks, and boost customer satisfaction [6].
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According to the Straits [7] report, the global AI market in aviation was valued at USD 1015.87 million in2024 and is expected to reach USD 1493.02 million in 2025. The market is projected to grow at a compoundannual growth rate (CAGR) of 46.97% between 2025 and 2033, reaching USD 32500.82 million by 2033.This growth is mainly driven by software-based AI solutions. ML is the leading technology, while virtualassistants are the most common applications. North America holds the largest market share (45.36%), withthe U.S. and Canada leading due to their investments in cloud-based software and big data. Airlines areincreasingly adopting AI for predictive maintenance, virtual assistants, and monitoring systems to improveoperational efficiency. The Asia-Pacific region is the fastest-growing market with a 51.13% CAGR, driven bycountries such as China, Japan, and South Korea. The use of ML and natural language processing in trainingand virtual assistant applications is growing rapidly. The major companies in this market include AmazonWeb Services, IBM, Microsoft, NVIDIA, Airbus, Boeing, Lockheed Martin, and Thales [7].
AI has become increasingly integrated into various domains of the aviation sector, including aircraft designand operation, production and maintenance, environmental management, air traffic management (ATM),airport operations, unmanned aerial systems, cybersecurity, and safety risk management [8]. In aircraftdesign and operations, AI contributes to the optimization of performance [9] through advanced simulationsand data-driven decision-making. In production and maintenance, it enables predictive maintenance [10] andautomates control [11], thereby reducing downtime and improving safety. AI also supports environmentalsustainability by enhancing fuel optimization and reducing emissions [12]. At airports, AI improves operationalefficiency through smart systems such as automated baggage handling [13] and passenger flow management[14]. Furthermore, AI plays a critical role in enabling autonomous operations and traffic coordination fordrones and urban air mobility solutions [15]. In cybersecurity, AI detects anomalies and prevents potentialthreats [16], while in safety management, it assists in proactive risk assessment and incident prediction [17].Among these areas, ATM is particularly significant. ATM offers strong potential for increased automationsupported by AI. Due to the repetitive nature of many procedures, aviation and ATM produce large volumesof data that can be used to apply AI tools and advanced automation. These technologies can help improveoperational efficiency and enable human operators to concentrate more on tasks that are critical for safety.
ATM is defined as the dynamic and integrated coordination of air traffic and airspace, encompassing air trafficservices, airspace organization, and flow regulation to ensure safety, efficiency, and economic performance[18]. Its core function is to address the imbalance between service demand and system capacity, enablingthe safe and orderly movement of aircraft across controlled airspace [19]. However, ATM faces severalchallenges, such as increasing airspace capacity, maintaining high levels of safety, enhancing operationalefficiency, reducing fuel consumption and emissions, and minimizing the impact of noise. These challengesrequire innovative approaches and the integration of advanced technologies. As the aviation industrycontinues to evolve, ATM is expected to undergo significant transformation in the coming decades [20].ATM is recognized as a critical domain for technological advancement [21]. Developing intelligent ATMsystems that incorporate digitalization, automation, and stakeholder collaboration is essential for achievingsafe, efficient, and reliable air traffic operations. The increasing complexity and density of global air trafficdemand more efficient and intelligent ATM systems. AI technologies enhance trajectory prediction [22],conflict detection [23], and decision-making [24], thereby reducing the controller workload and improvingthe situational awareness. These advancements contribute not only to operational efficiency but also toenvironmental goals by minimizing delays and optimizing fuel consumption. As such, AI is a key enabler inthe modernization of ATM systems, aligned with international initiatives like the Single European Sky ATMResearch (SESAR).
SESAR constitutes the technological cornerstone of the European Commission’s broader Single EuropeanSky (SES) initiative, which aims to enhance the efficiency, capacity, and sustainability of ATM across Europe.In response to the increasing complexity of air traffic and the escalating delays observed during the early2000s, SESAR was launched as a coordinated European effort to modernize the ATM infrastructure throughinnovation and system-wide integration. Prior to its establishment, ATM-related research and developmentactivities within the European Union were largely fragmented, conducted independently at national orinstitutional levels, often lacking strategic alignment or shared implementation pathways. This disjointedlandscape limited the scalability of research outcomes and hindered the development of harmonized so-lutions capable of addressing network-wide performance challenges. Recognizing the urgent need for aunified approach, the SESAR was formally initiated in 2008 under the framework of Regulation (EC) No.219/2008 of the European Council. Its primary objective was to consolidate and streamline ATM researchand development efforts, advancing promising concepts from early-stage research to deployment-readytechnologies. Importantly, SESAR sought to reduce redundancy in research activities, foster collaborationamong stakeholders, and ensure that innovations contributed to the overall performance of the EuropeanATM network, rather than delivering isolated or locally optimized outcomes. By aligning technologicaldevelopment with strategic policy goals, SESAR plays a central role in shaping a cohesive vision for the
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future of the European ATM, emphasizing interoperability, scalability, and environmental sustainability [25].
As the aviation sector increasingly embraces digital transformation, understanding how AI and ML tech-nologies are operationalized within strategic initiatives like SESAR becomes critically important. Despitethe growing interest in AI applications in ATM, there remains a lack of comprehensive studies that sys-tematically map how these technologies are being integrated into SESAR-funded innovation efforts. Thestudy addresses this gap by offering an in-depth qualitative analysis of the SESAR project documentationto identify concrete use cases and thematic concentrations of AI/ML implementation. By doing so, theresearch provides valuable insights into how Europe is leveraging intelligent systems to modernize ATMinfrastructure, enhance safety, and support sustainability goals. The findings contribute to the scholarlydiscourse by presenting an evidence-based framework that not only captures the current landscape ofAI/ML adoption in SESAR projects but also informs policymakers, researchers, and practitioners about futureopportunities and challenges at the intersection of emerging technologies and air traffic governance.
2 Material and Methods
To analyze the SESAR projects, a qualitative content analysis was conducted. The method enables thesystematic interpretation of textual data by identifying recurring patterns and underlying meanings. Itinvolves subjective yet structured coding processes [26], context-sensitive and rule-guided analysis [27],and efforts to reduce and make sense of large volumes of qualitative material [28].
2.1 Purpose and Importance of the Research
The primary purpose of this research is to systematically examine the use and the integration of AI and MLtechnologies within SESAR projects, aiming to identify key application areas and trends. Given the growingsignificance of AI/ML in ATM and the broader aviation industry, understanding how these technologies arecurrently used is critical for guiding future innovations and strategic developments. The study contributes tothe literature by providing a comprehensive analysis of AI/ML implementation in SESAR initiatives, therebyoffering valuable insights for researchers, policymakers, and industry stakeholders.
2.2 Scope of the Research
The study focuses specifically on projects within the SESAR (Single European Sky ATM Research) portfoliothat involve AI and ML technologies. The scope is limited to projects accessible through the SESAR ProjectPortal, with particular emphasis on those actively developing or employing AI/ML models. Projects unrelatedto AI/ML or those without sufficient publicly available data were excluded as well as those that were notconsidered directly related to ATM. Consequently, the research provides an in-depth exploration of 37relevant SESAR projects, ensuring a targeted and manageable dataset for detailed content analysis.
2.3 Research Data Collection Process
Data for the study were collected through a systematic review of online resources related to SESAR projects,accessed via the official SESAR Project Portal [29]. The portal provides an overview of ongoing researchfrom the Digital European Sky programme (2021–2028) and completed SESAR 2020 projects (2017–2023).Initially, 232 projects were identified using keyword-based searches focusing on “Artificial Intelligence (AI)”and “Machine Learning (ML)”. To ensure relevance to the field of ATM, projects not directly related to ATMdomains were excluded.
From the refined pool, 37 projects were selected based on three transparent inclusion criteria: (1) thepresence of clearly defined AI/ML methodologies or applications; (2) a direct focus on ATM operationalareas; and (3) the availability of sufficient publicly accessible documentation for qualitative analysis. Projectmaterials —including titles, objectives, and deliverables— were thoroughly reviewed and served as theprimary data sources.
To support the validity of the study, these inclusion criteria were applied consistently throughout the selectionprocess. To ensure reliability, a second researcher independently reviewed the selected projects using thesame criteria. Minor discrepancies were discussed and resolved through mutual agreement, strengtheningthe consistency and robustness of the overall analysis.
2.4 Analysis of the Research Data
The collected data were analyzed using qualitative content analysis, a method well-suited for identifyingpatterns and themes within textual information. The analysis involved the systematic coding of projectdocuments to categorize and classify AI/ML applications across the selected projects. Through iterative
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coding cycles, four primary thematic areas were identified. To enhance the validity and reliability of thecoding process, expert consultations were conducted with two subject-matter specialists who reviewed thecoding framework and offered feedback for refinement. This rigorous approach ensured that the findingsaccurately reflect the current landscape of AI/ML integration in SESAR projects.
3 Results and Discussion
3.1 Situational Awareness and Human-AI Teaming
The concept of situational awareness, which comes from the field of human factors and is widely used inhuman-automation systems, refers to the perception of elements in the environment, the understandingof their meaning, and the prediction of their future state [30], [31]. This model includes three main stages:perception, comprehension, and projection. It explains the type of information that humans need to performwell in fast-changing and high-risk environments such as air traffic control [32]. In human-machine systems,situational awareness also includes machine-based assessment, user awareness, and shared understandingbetween humans and machines [33]. As AI systems are used more often in the workplace, maintainingsituational awareness becomes more important for successful cooperation between humans and AI [34], [35].In this context, explainable AI helps by allowing systems to explain their decisions, show their strengths andweaknesses, and describe how they will act in the future [36]. Considering human factors, elements such asmental workload [37] and stress [38] significantly affect situational awareness and the potential for humanerror in complex environments like ATM. These factors must be accounted for to optimize the human-AIinteraction and ensure safety. Human-AI teaming is a human-centered way of using AI in work settingswhere AI systems work as team members. These systems use their abilities in learning, problem-solving,and decision-making to support human work [39], [40], [41]. This teamwork model emphasizes addressingkey challenges such as trust, transparency, explainability, clear communication, and user-centered designto ensure effective human-AI collaboration [35], [42]. When explainable AI is used in human-AI teams, itcan improve shared situational awareness, help with better decision-making, and support the growth ofindividual skills. It also helps people stay motivated and productive [43], [44], [45]. Therefore, bringingtogether situational awareness, human factors, and human-AI teaming shows the need for smart, clear, andsupportive AI systems in complex work environments.
Building on theoretical foundations such as situational awareness, explainable AI, and human-AI teaming,multiple SESAR-funded projects have aimed to develop practical AI-driven solutions to enhance human-machine interaction in ATM, as shown in Table 1. These projects include 11 exploratory research initiatives ,with six completed and five still ongoing. They were launched as early as April 2016 and had a total cost of€ 29.441.739,50.

Table 1. SESAR Projects on Situational Awareness and Human-AI Teaming

Project Id Project Type Status Project Duration Total Cost
MALORCA Exploratory research Completed 2016-04-01 > 2018-03-31 € 805.587,50AISA Exploratory research Completed 2020-06-01 > 2022-11-30 € 990.125,00HAAWAII Exploratory research Completed 2020-06-01 > 2022-11-30 € 1.825.000,00MAHALO Exploratory research Completed 2020-06-01 > 2022-11-30 € 997.212,50TAPAS Exploratory research Completed 2020-06-01 > 2022-11-30 € 997.410,00ARTIMATION Exploratory research Completed 2021-01-01 > 2022-12-31 € 999.375,00CODA Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 2.149.690,00TRUSTY Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 999.967,50JARVIS Industrial research Ongoing 2023-06-01 > 2026-05-31 € 15.762.359,50AWARE Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 1.940.625,00DIALOG Exploratory research Ongoing 2024-09-01 > 2027-02-28 € 1.974.387,50

MALORCA advanced automatic speech recognition technologies by integrating AI to reduce the controllerworkload and increase operational efficiency through improved accuracy and robustness. AISA developedan AI-based situational awareness system that integrated high-integrity operational data, knowledge-basedreasoning, and ML techniques to deliver an enriched real-time operational picture to air traffic controllers.HAAWAII developed a ML-based speech recognition architecture tailored to complex airspace regions,significantly reducing word error rates and improving communication effectiveness between controllers andpilots. MAHALO designed a hybrid ML system trained on both controller performance and physiological datato support conflict detection and resolution, promoting cooperative human-AI interaction. TAPAS exploredthe application of explainable AI and visual analytics to improve transparency and trust in automation-
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augmented ATM systems, developing strategies to address AI interpretability issues. ARTIMATION tackledtransparency challenges by utilizing data-driven storytelling and immersive analytics to enhance the ex-plainability of automated systems, thereby fostering improved understanding and trust among controllers.CODA created a digital assistant capable of predicting future traffic scenarios while monitoring controllers’mental workload, attention, and stress levels, thereby enabling adaptive support based on real-time cognitivestates through explainable AI methods. TRUSTY concentrated on increasing trustworthiness in AI-powereddecision-making within remote digital tower operations, employing information visualization techniquesto support human-machine interaction and decision validation. AWARE aims to enable human-machinecollaboration through an artificial situational awareness system that allows AI to anticipate and respondto human needs by understanding human intent and goals. JARVIS develops three AI-based solutions,one of which is an ATC digital assistant to support more efficient and green tower operations, alongsidean airborne digital assistant to assist crew and single-pilot operations, and an airport digital assistant toincrease automation for safety and security in intrusion detection scenarios. DIALOG focused on enhancinghuman-AI collaboration by developing an AI-powered assistant that anticipates the timing and nature ofsupport required by controllers, leveraging speech recognition and ML for naturalistic interaction.
3.2 Trajectory Prediction, Traffic Flow Management, and Network Optimization
The ATM involves all systems that support aircraft from departure through to landing, ensuring flight safetyand efficiency. A central component of ATM is trajectory prediction, which helps identify hazardous airspaceareas and avoid them, contributing to a safer flight experience [46]. Accurate trajectory prediction is essentialfor key ATM processes such as conflict detection, flight planning, and departure and arrival management[47]. In recent years, the integration of AI into ATM has significantly improved both safety and operationalperformance [48]. AI techniques, especially ML and metaheuristic algorithms, are widely used to enhance theprecision of trajectory prediction and support dynamic airspace optimization, particularly under dense trafficconditions [49]. A closely related component of the ATM is airspace capacity management, which ensuresthat the system can accommodate traffic demand safely and predictably. Accurate capacity estimation iscritical for maintaining the balance between traffic demand and airspace availability [50]. Moreover, poorcapacity management can lead to costly operational disruptions, especially when factors such as weather,wind conditions, and runway availability are not properly accounted for [51]. To mitigate such challenges,air traffic flow management strategies are employed. These strategies aim to reduce delays, optimizethe use of available airspace, and resolve imbalances between demand and capacity [52]. Therefore, theeffective integration of trajectory prediction, AI-based optimization techniques, and robust flowmanagementstrategies is essential to achieve a more reliable, safe, and high-performance air transportation system.
As shown in Table 2, several SESAR-funded projects have been launched to harness AI technologies forenhancing trajectory prediction accuracy and optimizing traffic flow management. Among the 14 projectslisted, seven have been completed and seven are ongoing. The earliest project began in June 2016, and thetotal combined cost of the 14 projects is €97.689.935,04. DART explored the application of ML and agent-based modeling to improve aircraft trajectory prediction and address demand-capacity balancing challenges,thereby contributing to delay reduction and enhanced planning effectiveness. START developed optimizationalgorithms that reduce uncertainties and create more predictable, stable, and resilient flight trajectoriesin ATM. ISOBAR developed an AI-driven network operations plan aimed at increasing the efficiency oftraffic demand and airspace capacity management, with particular focus on mitigating weather-induceddelays. SIMBAD enhanced large-scale airspace management microsimulation models through the applicationof ML, supporting network-level performance evaluation and decision-making. USEPE investigated MLapplications for separation management during strategic and tactical flight planning, focusing on improvingseparation outcomes for unmanned aerial systems. ALBATROSS demonstrated the potential of combiningtechnological and operational advancements with AI-based data analysis to enhance fuel efficiency acrossall phases of flight, contributing to more sustainable aviation operations. PJ18-W2 4D advanced trajectory-based operations by reducing trajectory uncertainty and augmenting airspace capacity, employing MLtechniques to refine ground trajectory prediction and separation assurance tools. HYPERSOLVER designeda reinforcement learning–based “hyper solver” leveraging AI for end-to-end conflict detection and trajectorymanagement, characterized by continuous reassessment and dynamic trajectory updates. ASTRA aimsto predict and resolve hotspots much earlier than current practices by using an AI-based tool that helpsoptimise capacity while allowing aircraft to follow more efficient and environmentally friendly trajectories.FASTNet integrated airport operations comprehensively into the network using data technologies and AI,targeting pre-tactical and strategic planning processes to optimize demand-capacity balancing. KAIROSfocused on improving the quality and reliability of meteorological information by integrating AI-enhanced liveweather forecasts with advanced decision support tools, facilitating better demand-capacity balancing in airtraffic flow management. ISLAND addressed the critical need for flexible, on-demand air traffic services that
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reflect dynamic traffic demands, ensuring the continuity of ATM services despite disruptions, while aimingto increase en-route capacity and optimize cost-efficiency through AI-enabled operational adaptability.ORCI explored AI-based advanced automation support tools intended to increase runway throughput byoptimizing vectoring instructions during arrivals within complex airspace environments. TADA utilizedhistorical ATM data combined with ML to improve terminal airspace performance, providing tailored decisionsupport tools for air traffic controllers.
Table 2. SESAR Projects on Trajectory Prediction, Traffic Flow Management, and Network Optimization

Variables Project Type Status Project Duration Total Cost
DART Exploratory research Completed 2016-06-17 > 2018-06-19 € 598.523,75START Exploratory research Completed 2020-05-01 > 2022-10-31 € 1.999.411,25ISOBAR Exploratory research Completed 2020-06-01 > 2022-11-30 € 2.609.230,00SIMBAD Exploratory research Completed 2021-01-01 > 2022-12-31 € 1.383.556,25USEPE Exploratory research Completed 2021-01-01 > 2022-12-31 € 1.999.308,75ALBATROSS Large scale demonstrations Completed 2020-12-01 > 2023-05-31 € 6.940.247,86PJ18-W2 4D Exploratory research Completed 2019-12-01 > 2023-06-30 € 39.185.498,81HYPERSOLVER Exploratory research Ongoing 2023-06-01 > 2025-11-30 € 1.291.438,75ASTRA Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 1.139.245,00FASTNet Fast track Ongoing 2023-06-01 > 2026-05-31 € 10.473.705,00KAIROS Fast track Ongoing 2023-06-01 > 2026-05-31 € 6.030.337,50ISLAND Industrial research Ongoing 2023-06-01 > 2026-05-31 € 21.449.959,62ORCI Exploratory research Ongoing 2024-06-01 > 2026-11-30 € 819 493,75TADA Exploratory research Ongoing 2024-09-01 > 2027-02-28 € 1.769.978,75

3.3 Automation in Communication, Navigation, Surveillance (CNS), and Safety Monitoring
Automation technologies, especially in CNS, have transformed ATM by replacing manual tasks with advancedsystems that improve efficiency, accuracy, and safety. AI, especially Long Short-Term Memory (LSTM) neuralnetworks, allows real-time analysis of aircraft surveillance data. These systems help detect conflicts earlyand support safer decision-making processes in automated environments [53]. CNS systems are at the coreof this transformation. They provide the integrity, accuracy, and robustness needed for safe navigation,particularly in congested or complex airspace environments [54]. The modernization of the ATM depends onimprovements in the CNS infrastructure, which enable reliable communication and navigation for growing airtraffic demands [55]. AI algorithms process data frommultiple heterogeneous sensors and sources, improvingthe detection and tracking of aircraft. These technologies are also essential for Urban Air Mobility (UAM)and Unmanned Traffic Management (UTM), where high-precision positioning and real-time transcriptionand interpretation of pilot-controller communications are vital [56]. Predictive analytics facilitate theidentification of potential safety risks, allowing early warnings and actions before incidents occur. As statedin many studies [57], [58], [59], CNS technologies form the backbone of the modern ATM, directly impactingaviation safety and efficiency. The integration of AI with CNS technologies represents a paradigm shift inATM, as intelligent systems enhance the precision, responsiveness, and adaptability of CNS functions andenable predictive, data-driven control strategies that are essential for managing future airspace complexity.
As shown in Table 3, several SESAR projects have operationalized AI-driven automation in communication,surveillance, and safety monitoring to enhance the resilience and overall performance of ATM systems. Ofthe eight projects listed, seven have been completed and one is currently ongoing. The earliest projectcommenced in October 2017, and the total combined cost of the eight projects is €14.766.843,75. TERRAdefined a technical ground architecture for safe and efficient urban drone operations by utilizing ML algo-rithms to enable early anomaly detection and conflict prediction in complex urban airspace. NewSenseexplored AI-enhanced low-cost surveillance technologies such as 5G and millimeter-wave radar to improvesafety and capacity in Advanced Surface Movement Guidance and Control System (A-SMGCS) operations,demonstrating practical benefits in airport surface management. BUBBLES proposed a Concept of Opera-tions (ConOps) that incorporates conflict horizons, separation modes, and separation minima dynamicallyupdated by AI algorithms aligned with CNS system performance. SINAPSE developed an intelligent andsecure aeronautical communications network architecture based on software-defined networking and AItechnologies, facilitating efficient data sharing while ensuring data privacy and cybersecurity compliance.ALARM developed an early warning system hosting platform that assimilates multi-source data from naturalhazard observation systems, producing multi-hazard predictive models disseminated through aeronauticalcommunication networks. SafeOPS investigated AI-based safety applications focused on real-time hazardprediction, concentrating on the development of a decision support tool to improve go-around maneuver
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predictions and reduce risk during critical flight phases. TINDAIR aimed to develop a tactical deconflictionservice for integrating unmanned aerial systems into complex airspace, featuring a conflict resolution moduleenhanced by an AI algorithm for real-time in-flight decision-making. CNS DSP aimed to accelerate the marketadoption of CNS data services by developing and validating CNS data solutions that support unmannedaircraft system traffic management and AI integration.
Table 3. SESAR Projects on Automation in the CNS and Safety Monitoring

Variables Project Type Status Project Duration Total Cost
TERRA Exploratory research Completed 2017-10-01 > 2020-02-29 € 937.000,00NewSense Exploratory research Completed 2020-11-01 > 2022-10-31 € 995.350,00BUBBLES Exploratory research Completed 2020-05-01 > 2022-10-31 € 1.893.197,50SINAPSE Exploratory research Completed 2020-05-01 > 2022-10-31 € 853.300,00ALARM Exploratory research Completed 2020-11-01 > 2022-12-31 € 991.268,75SafeOPS Exploratory research Completed 2021-01-01 > 2022-12-31 € 997.750,00TINDAIR Large scale demonstrations Completed 2021-02-01 > 2022-12-31 € 4.000.145,00CNS DSP Fast track Ongoing 2023-09-01 > 2026-08-31 € 4.098.832,50

3.4 AI Integration and Ethical Governance
The integration of AI in the ATM brings important benefits in terms of efficiency, safety, and operational per-formance. However, it also raises critical concerns about data privacy, transparency, and ethical governance.The success of AI systems in aviation depends largely on how well they ensure data security and privacy[60]. Particularly in the ATM, any data breach or cyberattack can reduce trust in AI-based systems and limittheir acceptance among stakeholders. Therefore, compliance with data privacy regulations [61] and theeffective implementation of cybersecurity measures are essential [62]. These efforts are vital for ensuringoperational continuity and maintaining a secure environment across the aviation industry. The integration ofAI into aviation requires updates to current regulations and new certification processes to ensure safetyand reliability [63], [64]. Another critical aspect is the explainability of AI systems, as understanding howalgorithms make decisions is essential for ensuring safety, building trust, and supporting acceptance [65].However, deep learning models often function as "black boxes", meaning their internal decision-makingprocesses are difficult to interpret [66]. This lack of transparency may increase operational risks and reduceconfidence, especially in safety-critical environments such as aviation. Therefore, enhancing the explainabil-ity and auditability is essential. Ethical concerns also arise, as AI tools such as passenger screening and riskassessment may lead to unintended algorithmic bias and discrimination [67]. To prevent such outcomes,ethical guidelines should be developed and integrated into the design and implementation of AI systems inATM.
As shown in Table 4, several SESAR projects have been launched to translate ethical and regulatory consider-ations into operational practices for AI integration in ATM. Two of these projects have been completed, whiletwo are currently ongoing. The earliest project began in March 2016, and the total combined cost of thethree projects is €4.969.520,00. INTUIT examined the interdependencies among key performance indicatorsin ATM by integrating visual analytics andML, facilitating more informed and ethically sound decision-makingprocesses. AICHAIN concentrated on enabling the privacy-preserving exploitation of extensive privatedatasets sourced from multiple stakeholders through federated learning techniques, thereby enhancing MLapplications while ensuring data privacy and security. HUCAN developed comprehensive design guidelinesand an implementation toolkit to streamline the development of automation and AI-powered systems,while also investigating certification strategies and regulatory challenges to ensure compliance with existingaviation safety requirements. SynthAIr project explores and defines AI-based methods to generate syntheticdata, which are attractive because they require less user expertise and offer better generalization capabilities.

Table 4. SESAR Projects on AI Integration and Ethical Governance

Variables Project Type Status Project Duration Total Cost
INTUIT Exploratory research Completed 2016-03-01 > 2018-02-28 € 998.125,00AICHAIN Exploratory research Completed 2020-06-01 > 2022-11-30 € 1.757.491,25HUCAN Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 998.900,00SynthAIr Exploratory research Ongoing 2023-09-01 > 2026-02-28 € 1.215.003,75

7/11



4 Conclusion
The study has explored the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologiesin SESAR projects within the context of the Single European Sky (SES) initiative. The analysis covered37 SESAR projects, identifying key patterns of AI/ML applications across four thematic areas: situationalawareness and human-AI teaming; trajectory prediction, traffic flow management, and network optimization;automation in communication, navigation, surveillance (CNS), and safety monitoring; and AI integration andethical governance.
The findings indicate that AI/ML technologies are being increasingly adopted to support core Air TrafficManagement (ATM) functions. These technologies enhance system performance, reduce controller workload,and improve decision-making through predictive and adaptive tools. In particular, trajectory prediction andautomated conflict resolution benefit significantly from ML-based models, while natural language processingand speech recognition enable more efficient human-machine communication.
Furthermore, ethical concerns such as transparency, trust, and human oversight have been addressed inseveral SESAR projects. This reflects the growing importance of responsible AI use in aviation and alignswith international discussions on AI governance.
The study has a notable limitation in terms of geographical scope. It focuses exclusively on ATM AI/ML appli-cations within the SESAR program, which reflects the European perspective on ATM modernization. WhileSESAR is widely recognized as a globally leading initiative in ATM innovation, and its project documentationprovides extensive, structured, and publicly accessible data for in-depth analysis, similar access is not avail-able for non-European programs. For instance, the United States’ Next Generation Air Transportation System(NextGen) focuses on digitalizing air traffic operations; Australia’s OneSky initiative aims to integrate civiland military ATM under a unified system; Brazil’s SIRIUS program targets the development of an integratedATM framework tailored to its large territory; and Japan’s Collaborative Actions for Renovation of Air TrafficSystems (CARATS) initiative promotes long-term innovation in ATM through stakeholder collaboration andadvanced technologies. However, the lack of publicly available, project-level documentation comparable tothe SESAR portal limits the feasibility of a systematic cross-regional analysis. As a result, while the findingsoffer valuable insights into AI/ML use in European ATM, they may not fully capture developments occurringin other regions.
Future research could examine how AI/ML tools used in SESAR projects perform in real operational settings.A key area would be the interaction between humans and automation, especially how AI systems affect airtraffic controllers’ workload, decision-making, and trust. Another important direction is the assessment ofdata privacy and cybersecurity in operational AI systems. Aviation involves highly sensitive data, and anysecurity breach could damage trust in AI tools. Research should evaluate how well current systems alignwith privacy policies and whether cybersecurity measures are sufficient. It is also important to study howunderstandable these AI systems are. Many of them work like a “black box”, making it hard for users to knowwhy a decision was made. In a safety-critical field like aviation, improving explainability can help increaseconfidence and reduce risks. Finally, ethical concerns such as algorithmic bias should not be overlooked.AI systems that process personal or operational data may unintentionally lead to unfair outcomes. Futurestudies could explore ways to detect and reduce bias, ensuring fairness and accountability in AI-supporteddecisions. These areas would help build a more complete picture of how AI can be safely and responsiblyused in air traffic management. Overall, this study contributes to a deeper understanding of how AI and MLare shaping the future of ATM in Europe and lays the groundwork for broader, comparative research onintelligent aviation systems worldwide.
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