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Abstract
This paper explores the vibrant field of autonomous agents based on large language models. In recentyears transformer-based large language models (LLMs) have advanced state of the art considerably in awide range of natural language tasks and demonstrated almost human-like reasoning capabilities and worldknowledge. Since autonomous agents rely on such properties, advances in LLMs have accelerated theprogress in autonomous agents. This paper reviews the literature by briefly describing how LLMs workand how they can be leveraged in the overall architecture of an autonomous agent to produce significantlymore capable and robust agents. Planning, memory, and action components of the autonomous agent areexamined separately and a discussion of trends and future directions follows.
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1 Introduction
Large language models (LLMs) based on the Transformer architecture [1] have been extraordinarily successfulin recent years. Many of these models [2] [3] [4] [5], developed and released by research and industrygroups in quick succession, have rapidly pushed forward the state of the art in natural language tasks infew-shot and zero-shot settings [6] [7]. LLMs excel in solving a broad range of natural tasks, exhibitingunprecedented emergent properties, extensive world knowledge, and advanced reasoning abilities [8].Autonomous agents [9] stand to benefit significantly from these new capabilities, enhancing their abilityto understand instructions in natural language as well as to plan and act with common sense and a robustworld model.
This paper explores the rapidly evolving trends in LLM-based autonomous agents and describes selectedimportant examples from the field. We provide a brief overview of LLMs and the transformer architecture insection 2 and in section 3, we examine the specifics of LLM-based autonomous agents, focusing on essentialcomponents such as planning, memory, and action. Finally, section 4 identifies and discusses prevalentpatterns in current research, offering conclusions and future directions in this swiftly developing area.
2 An Overview of the Decoder-Only Transformer Architecture
We begin with a brief overview of the large language models as the LLM-based autonomous agents are, bytheir very nature, tightly coupled with this transformer-based architecture. The fundamental structure oftransformers was put forth in the groundbreaking “Attention is All You Need” paper [1] and has remainedmostly similar to this day, with the more recent models adding tweaks to this architecture for incrementalbenefits. Instead of documenting each possible modification to the architecture, we will present a stylizedversion of a possible current model and note that LLMs from different publishers might utilize slight variationsin their structure.
At a fundamental level, the large language models create a conditional probability distribution on tokens,which are words or word-like bits of text described in more detail in subsection 2.1, given the tokenspreviously seen in the text. The models we consider in this paper are auto-regressive, which means theyoperate in a sequential manner to predict the next token based only on the previous tokens. LLMs aretrained with massive corpora of text and the training aims to maximize the probability of the correct tokenat each location in the text. In concrete terms, given a sequence of tokens t = {t1, · · · , tN } in the trainingcorpus, the training objective is to maximize the likelihood of the correct token or, equivalently, minimize
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L (t) = −
N∑
i=1

log[P (t i |t i−1, · · · , t i−k ;Ω)] (1)

where L (t) is the cross-entropy loss over the given sequence of tokens, k is the number of previous tokenswe consider (sometimes called the context window length), and Ω is the set of trainable parameters of themodel. This objective function will force the randomly initialized model to mimic its input texts after sometraining as the Kullback-Leibler divergence between the distributions of the training texts and predictedtokens will be minimized.
The architecture of the large language model we will consider can be seen in Figure 1. Note that thisis a decoder-only model rather than the fundamental encoder-decoder structure proposed in [1] as theagents we are interested in will use decoder-only models. We now briefly review the components of thisarchitecture separately in the order of their appearance in the forward pass of the model.

Input
“What is your”

Tokenizer
“What”, “ is”, “ your”

Embedding & Positional Encoder
t1, t2, t3 ∈ Òd

Attention Feed Forward
x1, x2, x3 ∈ Òd

Linear Layer, Softmax
p ∈ ÒV

Output
“ name”

Transformer: Repeat 96 times

Figure 1. Stylized Structure of a Large Language Model.

2.1 Tokenization and Embedding
Sequences of text need to be tokenized and embedded into a vector space before they can be consumedby language models. A tokenizer is a deterministic program that uses a heuristic rule to break down textinto chunks called tokens. These tokens, usually words and subwords, are the inputs into the model andthe final output is a conditional probability distribution on the tokens. Two of the most commonly usedtokenizers in the currently state-of-the-art models are Wordpiece [10] and Byte Pair Encoding [11]. Theyhave a similar working principle in that they both break down the text into characters and then progressivelymerge contiguous chunks. The difference is that Byte Pair Encoding (BPE) merges chunks depending on thefrequency of the merged text in the corpus, whereas Wordpiece, in addition to BPE’s criterion, gives priorityto merging chunks that are infrequent on their own. The examples below illustrate the tokenization of tworandom phrases by the BPE tokenizer of OpenAI’s GPT-4 [5] as implemented by the tiktoken library [12].
Example Go to the store and buy groceries
Example high-rise buildings and backfilled excavation sites
The tokenizer indexes each possible token in the created vocabulary with an integer value and for any giventext, this sequence of integers are sent into the embedding layer. Unlike the tokenizer, the embedding layer isnot deterministic and usually needs to be trained along with the rest of the model. Embedding in NLP refersto the process of projecting each discrete token-indexing integer into a high-dimensional vector space. Someof the first papers on embedding in NLP were Word2Vec [13] and GloVe [13], which showed how to embedwords into high-dimensional vector spaces in such a way that their distances and linear transformations inthat space are semantically sensible. While these earlier algorithms considered vector spaces of dimensionsizes in the hundreds, the current breed of models tend to embed tokens to much higher dimensional spacesin order to capture richer meaning, with LLaMA-2 [4], for instance, using an embedding dimension of 4096.
While the token vector embeddings capture the meanings of the individual words, the positions of tokensalso hold semantic and syntactic value. The attention block itself has no way to account for the ordering ofthe tokens. Therefore, we need to feed information about the order to the rest of the model with another
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type of embedding called position encoding. [1] uses different frequencies of sine and cosine functions toderive positional encodings. A popular alternative is Rotary Position Embedding (RoPe) as proposed by [14]and used in prominent models such as LLaMA-2. Regardless of the method used, the positional encoding isusually a vector that is the same size as the semantic embedding vector described previously, which allowsthe two vectors to be simply summed up to create one vector per token as an input to the attention block.
2.2 The Transformer Block
The attention mechanism described in [1] is still commonly used in LLMs today and it is arguably the mostimportant part of the model as it can take credit for most of the impressive features of large language models.The type of attention that we consider in this paper falls into the category of self-attention, which means itattends only to its input sequence as opposed to other attention types that can also attend to their outputsequences.
Before launching into a description of the core of the transformer block, we note that most models includea normalization step at the end or, more commonly in the recent models, at the beginning of the attentionmechanism. One popular normalization method is Layer Normalization [15], which scales and shifts its inputto match a distribution easier to process. These normalization components provide numerical stability duringtraining and help avoid the usual problems of vanishing or exploding gradients.
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Figure 2. Inner Working of the Attention Mechanism.

The fundamental function of the attention layer is to calculate the weight which a given token will assignto the information content of every other token. Figure 2 gives an overview of the mechanism. Given thetoken embedding dimension size d and assuming the attention mechanism also uses dimension d , the modellearns the weight matrices Q ∈ Òd×d , K ∈ Òd×d , andV ∈ Òd×d , which are used to project the incomingtoken embedding vectors into query, key, value spaces respectively. Thus, at every prediction step of themodel, we calculate for every token t i ∈ Òd in the context window
qi = Qt i

k i = K t i

vi =V t i

(2)

which are query, key, and value vectors for the token respectively. Query vectors are used to query therelevance of the token to every other token. The key vector is the answer to queries from other tokens to
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determine similarity and the value vector holds the information content of the token. In practice, we keepthe key and value vectors in a cache instead of re-calculating them at every step and further optimizingthe memory footprint of that sizable cache has been a persistent research target recently as in [16]. At theend of the attention layer, we want to calculate a weighted sum of all value vectors for every token in thecontext window, where the weights are the attention weights given to the corresponding tokens. For a giventoken t i , we first calculate attention scores ai j between t i and all other tokens t j in the context window:
ai j =

qi · k j√
d

(3)
The inner product is used here as a measure of similarity as two vectors will have a greater inner product ifthey are more closely aligned in the vector space. Thus, the attention score will be greater if the query vectorof one token is similar to the key vector of the other. The scaling expression in the denominator is helpfulbecause the inner product yields very large values as the dimension size increases and large values yieldvery small gradients during training. Once we have the attention scores, we obtain the attention weightswith the softmax function:

αi j = softmax(ai j ) (4)
and the output vector xi for the token is simply

xi =
∑
j

αi j vj (5)
The process described here is applicable in the case of a single attention head. Many models make useof multi-head attention, which refers to multiple such attention mechanisms working as described butindependently of each other. It is common for a multi-head attention model with h heads to use Q , K ,
V matrices in Òdk ×d such that dk = d/h, in which case the output vector from each head can be simplyconcatenated to produce a d -dimensional output vector.
The second part in the transformer block is a relatively straightforward feed-forward network (FFN), whichhas two linear transformations separated by a non-linear activation function such as ReLU:

FFN(x ) = max(0, xW1 + b1)W2 + b2 (6)
whereW1 andW2 are trainable weight matrices and b1 and b2 are trainable bias terms. It is common toregularize the FFN using the dropout method [17]. Many models set the dimensions ofW1 andW2 suchthat the input vector is mapped to a higher dimension by the first transformation and then reduced to theoriginal dimension by the second one. This allows a richer semantic representation inside the fully connectedcomponent. Intuitively, the attention mechanism retrieves all the relevant information from the context andthe feed-forward network analyzes the retrieved information in depth with the higher dimension mappingand non-linearity enhancing its expressive power.
Most models also make use of residual connections in between the attention and FFN components as wellas after the FFN. These connections add the input of a layer to the output of the same layer. Residualconnections provide a more direct connection from the trainable parameters appearing earlier in the modelto the parts closer to the final prediction. This provides better gradient updates to the parameters near thebeginning during training and prevents situations in which these parameters are not learned adequately dueto extremely small gradients.
Large language models run multiple transformer blocks in succession of each other in order to process datamore thoroughly. For instance, the LLaMA-2 model has versions with 32, 40, and 80 transformer layers [4]and one of the larger GPT-3 [2] versions has 96 layers.
2.3 Token Prediction
The last step in the large language model comes after the series of transformer blocks. With the lasttransformer block yielding one enriched context vector xi for every token t i in the input sequence, this laststep maps the vectors back into the vocabulary space and uses the softmax function to create a distributionof probabilities. Thus, for i -th position, the predicted probability vector is

p = softmax(W0.xi + b0) (7)
where xi ∈ Òd is the input context vector for the token from the last transformer block,WO ∈ ÒV ×d and
bO ∈ ÒV are trainable parameters andV is the vocabulary size. The most obvious and common way to pick
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a token using the output probability distribution is to pick the token corresponding to the highest predictedprobability. Alternative methods exist such as sampling from the multinomial distribution implied by p afterfiltering down only to the top k most likely tokens, called top-k sampling. [18] give a good overview of thesampling alternatives.
3 LLM-Based Autonomous Agents
Large language models have become remarkably popular in recent years in some part because they openedup the state of the art in artificial intelligence to a general audience in the user-friendly form of chatbots.There is a growing body of research which shows that, in addition to their usefulness as chatbots, the largelanguage models can enable breakthroughs in the field of autonomous agents due to their extraordinarilystrong reasoning abilities. For the purposes of this paper, an autonomous agent is defined as a system thatinteracts with its environment to solve a given task. The task can be quite complicated with multiple stepsand the autonomous agent has to make its planning and pursue its agenda without any assistance fromhumans. The older autonomous agents relied on relatively simple rules and heuristics in small sandboxenvironments, often borrowing from traditional control theory. [9] provides a good overview of what theyrefer to as intelligent agents. Later on, deep learning opened up new possibilities and techniques usingdeep reinforcement learning, in particular, such as [19] and [20] made marked improvements on earliermethods even though they still suffered from the problem of being confined to relatively small world models.The newer LLM-based agents have innovated heavily on traditional methods and show better promise inhandling complex real-world tasks and possibly growing into AGI systems in the future.
3.1 Examples of LLM-Based Autonomous Agents
AutoGPT [21] and BabyAGI [22] were two of the first LLM-based autonomous agents that were releasedshortly after ChatGPT. Both of these systems implemented the idea of running OpenAI’s GPT model [2]multiple times in order to break down complex tasks into parts and work on the parts in an iterative fashion.While AutoGPT focuses on handling practical tasks and has the ability to navigate the Internet and performvarious external actions, BabyAGI focuses more on learning, memory, sequential decision-making, andefficient task management in an effort to put forth a blueprint for a possible future AGI. A similarly earlyagent is HuggingGPT [23], which uses ChatGPT for planning and matching user requests with modelsavailable on the Hugging Face platform based on model descriptions in order to combine capabilities acrossa diversity of expertise areas and modalities such as text, vision, and speech. ViperGPT [24] is another takeon multimodality, where the agent, given an image and a related question, generates Python code leveragingvision models to answer the question.
Agents focused on the software engineering process have particularly attracted a lot of attention. GPT-Engineer [25] is an agent that takes a brief description of the desired software product, asks a few clarifyingquestions, and builds a complete project consisting of multiple files possibly written in different languages. Italso has the ability to take a sketch of the desired UI as an input image and recreate the UI in code. ChatDev[26] and MetaGPT [27] make use of multi-agent frameworks to create virtual models of complete softwarecompanies. A multi-agent framework contains multiple autonomous agents, each customized for a particularrole with different priorities, capabilities, and targets. ChatDev and MetaGPT create agents with the rolesof developers, QA engineers, designers, architects, and project managers, whose interactive collaborationproduces the desired software program.
Games provide a relatively cheap playground in which to experiment with autonomous agents. GenerativeAgents [28] is a very interesting simulation of human interaction in the form of a small community ofhuman-like agents living in a simulation environment similar to The Sims. The agents in the community havedifferent identities and memories. They are able to remember persistent information about themselvesand others, remember what happened in the past in the simulation, keep to their schedules, plan, andinteract with other agents in a way that causes emergent social structure. Another example is Meta’s Ciceroagent [29] that plays Diplomacy, which is a turn-based Risk-like game of conquest that involves strategiccalculations and delicate negotiations with other players in natural language. Cicero models what everyother player is likely planning, computes its own optimal plan and uses large language models to bargainwith, or manipulate, other players. Thus, it serves as an excellent example of combining other machinelearning capabilities with natural language models.
Embodied agents, which are autonomous agents attached to either a physical or simulated body, havealso benefited from the recent wave of integration with large language models. The DEPS framework [30]works on the problem of multi-step reasoning for long-term tasks in the Minecraft world by introducinga refinement of planning with descriptions and iterative feedback on errors. Voyager [31], on the other
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hand, creates embodied agents in the Minecraft world that emphasize long-term learning, development,maximization of exploration, and, notably, storage of complex behavior in libraries of executable code.SayCan [32] is an application of LLM-based agents in the world of robotics, in which rich world knowledgeand semantic capabilities of LLMs are combined with the low-level physical skills of a robotic system, enablinga robotic arm to follow long-term human instructions specified in natural language. In summary, transitionfrom simulated agents to the physical world is likely to enable a huge spectrum of potential uses for artificialintelligence systems in the near future. Especially the autonomous agents that utilize the growing capabilitiesof multimodal models that integrate language capabilities with other modalities such as vision and soundhold great potential for robotics.
3.2 Overall Architecture
The examples described in subsection 3.1 come with significantly varying designs, but a general architecturefor a representative LLM-based autonomous agent can be seen in Figure 3. The indicated modules forPlanner, Memory, and Action are the capabilities that the agent is able to draw upon when performing itstasks. The planner module is particularly important as it is the entry point for the high-level task set by ahuman and specified in natural language. This module decides how the task will be handled and which ofthe other modules to call on if needed. This module benefits significantly from the real world informationand reasoning capability embedded in large language models. The memory module holds information, eitherpersistent or produced during the agent’s run, that is not contained in the LLM used by the planner. Theaction module serves as an actuator, acting on the environment, possibly using external tools, and returningthe result of the action to the planner. It can be observed that the architecture of the autonomous agentis somewhat reminiscent of the human brain and the specialization of modules for different functionalityin pursuit of efficiency is akin to different sectors of the brain having the same biological material butspecializing in different tasks.

Autonomous Agent

Planning

• Input-Output• Chain of Thought• Plan-and-Solve• Self-Consistency• Tree of Thought• Graph of Thought

Memory

• In Context• Vector Databases• ConventionalDatabases• ConsolidatedMemories

Action

• Calculator• Online Search• APIs• Sensors• Actuators• Arbitrary Programs

Figure 3. Components of a Representative Autonomous Agent.

In the remainder of this section, we discuss the major components of the architecture separately in greaterdetail.
3.3 Planning
Planning is a fundamental task for autonomous agents and it relies heavily on a human-like reasoningcapability to navigate the complex landscape of real-world tasks. This aspect of the agent has significantlybenefited from the advent of large language models. LLMs excel in ingesting instructions specified in naturallanguage, modeling rich world scenarios, and exhibiting advanced reasoning capabilities, making them ideallysuited for planning tasks for an autonomous agent. The primary function of the planning module is tomanage the agent by understanding human-supplied instructions, decomposing the high-level goal intosmaller subtasks, and utilizing other modules of the agent as necessary. Depending on the complexity of theassigned tasks, this module can range from simple in structure to quite sophisticated.
The simplest possible way of planning is the Input-Output method, which is merely posing the question to anLLM and getting an answer immediately without any intermediate steps. This might be viewed as a normalusage of an LLM rather than an autonomous agent. A marked improvement on this approach is the Chain ofThought (CoT)[6], which significantly increases the correctness of answers to complex queries and provides
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the breakdown of complex queries that is useful for an autonomous agent. This method works by addingto the prompt a directive to break down the task into smaller subtasks such as “Let’s think step by step.”and a few worked-out examples of a complex query being decomposed into intermediate steps and solvedsequentially. An intuitive understanding of why this helps the LLM might come from the observation thatLLMs are designed to produce each token with the same amount of computation. An easier question can beanswered with smaller amounts of computation, but a complex query requires the larger computationalspace that CoT provides.
Some notable variations on the CoT idea are zero-shot CoT [7], which omits the worked-out examples fromthe prompt with no large penalty, and Plan-and-Solve prompting [33], which records gains in math andcommon sense questions by requiring the LLM to make the plan first before answering. A more sophisticatedapproach is Self-Consistency [34] (CoT-SC). This method uses the temperature parameter of the LLM toproduce multiple different plans and then chooses steps that are supported by the most plans in a majorityvote setting. This kind of planning ends up being more creative and takes into account the fact that multipleplans might all have valid insights into the problem.
A major improvement over the Chain of Thought was the Tree of Thoughts (ToT) [35]. The ToT methodbuilds a tree in which the root node is problem statement and each branching node is a "thought" relatingto its parent node. The generated tree is then pruned by a process which might judge a particular subtreeas unpromising due to its children nodes diverging too far away from the desired result. This gives theToT the crucial ability of backtracking from wrong paths without losing good progress already made. As apoint of comparison, the Self-Consistency method also produces multiple plans but might discard plansentirely if their later stages go down a wrong path. This more iterative approach enables significant gainsfor ToT in problem-solving abilities and real-world applications such as robotics. A further generalizationover Tree of Thought is the Graph of Thought (GoT) [36]. GoT is very similar to ToT, but it has a few keyimprovements, such as the inclusion of a self-refining process at every step and modeling thoughts as ageneral graph rather than a tree. A node in a graph might have multiple parents and GoT takes particularcare to merge branches in different parts of the graph. The intuitive idea behind this method is that multiplepaths of thought might lead to the same conclusions or further paths of thought and this reusability helpsin efficiency and correctness. An even further step in this direction is the Hypergraph of Thoughts [37].A hypergraph is a generalization of the concept of graphs, in which an edge can join an arbitrary numberof vertices. Such a structure can potentially become useful especially in a multimodal context. Selectedplanning methods are summarized in Figure 4.

Figure 4. Different Planning Frameworks. Image reproduced with permission from Besta, Blach
et al. (2024) [36].

A crucial aspect of autonomous agents is their ability to use external tools as portrayed in Figure 3. Theplanner of the autonomous agent must, therefore, be aware of the existence and purpose of the availabletools and be ready to use them if appropriate. One popular way of integrating external tools with a CoTagent is the ReAct framework [38]. ReAct, which stands for reason and action, interleaves reasoning andacting steps, thereby giving the agent ability to evaluate the results of actions and plan further at eachstep. This method uses directives and examples in the prompt to make LLM output Thought - Action -Observation steps at each stage. The Thought part reasons and identifies an action to take. Action executesthe action and Observation is an evaluation of the result of the action taken. Thought and Observationsteps are generated by the LLM whereas Action is executed externally. In this framework the agent choosesexternal tools based on the context in the prompt, which includes a brief description of every tool as well
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as instructions for utilization. This iterative method of using tools and making new plans based on resultsprovides a significant capability boost to autonomous agents.
3.4 Memory
The memory component may contain records of external information or recollections of the history of theagent and, therefore, is an important part of the autonomous agent. Efficiently organized memory structuresallow an agent to “remember” past observations and actions as well as any type of knowledge not alreadyincluded in the base large language model. This section reviews the different ways of storing and accessingmemories.
An easy way of integrating memory is to inject what needs to be remembered into the prompt of the LLM.This can be viewed as a short-term memory as the information in the prompt is immediately available tothe model and is not persisted in another storage tool. While convenient, this method is restricted by therelatively narrow context window of the currently available large language models. Continuing the metaphorof human memory, we can consider as long-term memory the use of external storage. Some examples ofstorage types might be conventional and NoSQL databases or vector databases that hold embedding vectorsfor bits of text. The use of vector databases to hold information is sometimes called Retrieval AugmentedGeneration (RAG) [39]. In this framework, the agent has to find the memory most relevant to the task athand and retrieve it as natural language to be added to the prompt of the LLM in the next step. Findingthe most relevant memory is a problem remarkably similar to the task of attention mechanism describedin subsection 2.2, which computes how much attention to pay each token in the context based on theinput. The solution is likewise similar. For an input query q and a memory set M , all produced with the sameembedder, the most relevant memory for the given query is

m∗ = arg max
m∈M

q · m (8)
where · is the inner product operator. Most vector databases use efficient Maximum Inner Product Searchalgorithms that run such optimizations with reasonable algorithmic complexity.
It is often useful to reflect on memories and store the result of the reflection rather than raw memoriesthemselves. One advantage of such reflection is that the summarized information can be much smaller,making storage and later retrieval much cheaper. Another advantage is that the model could glean valuablehigh-level insights from raw observations that could not be observed by themselves. One such memorystructure is demonstrated in Generative Agents [28], described in subsection 3.1, which creates a communityof individual agents living in a virtual town, all with their own personality and memory. Every agent in thisworld takes time to reflect on what it observes and synthesizes a consolidated higher-level thought, called areflection. To give a concrete example, if agent A observes agent B reading books about architecture, agent Amight reflect that “Agent B is interested in architecture.” Such consolidation creates more useful informationfor the agent as well as reducing the cost of storage significantly. Another noteworthy innovation is theReflexion framework [40], which uses self-reflection to gain an understanding of its own past errors andimprovement opportunities and can store its conclusions in a long-term database. Such input allows it tomake better plans in the future, enabling steady long-term improvements for the agent.
3.5 Action
The ability to act on or get information from the external world is one of the most useful aspects ofautonomous agents in real world settings. The set of available actions might be baked into the constructionof the agent, such as a robotic arm, or it might include the use of arbitrary computer programs as tools.Just as the usage of tools is extremely valuable for humans, it also unlocks lots of new capabilities for anautonomous agent. The action module is usually called once the planner of the agent decides to performan action or use a tool with a process such as ReAct [38], described in subsection 3.3, and forwards thecontext to the action component. In addition to performing the action, this module is also responsible for thegeneration of action inputs, which might be commands or parameters that most tools require. For example,given a decision to use an Internet search engine and the context, the agent needs to generate the searchquery to be passed to the search engine.
The set of available actions is usually given to the agent as part of the initial prompt and can include awide variety of prepared functionality. One action might be to simply use an LLM, which can be either thesame one as the planner or another one specialized for certain areas of expertise such as law or medicine.HuggingGPT [23], described in subsection 3.1, is an example in which the agent chooses a model to usefrom the online repository of Hugging Face. Another popular external tool family is mathematical software.Since mathematical operations are not the strong suite of large language models by their nature [41], an
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agent can, for instance, write down a complex arithmetic expression and pass it to a calculator. TPTU [42]builds on this idea and creates a framework in which the agent can compose and execute Python code tocompute answers to mathematical problems. Another family of tools that have seen widespread usage areAPIs, or Application Programming Interfaces. These APIs can have arbitrary functionality, including supply ofinformation or acting in various ways on the world. Toolformer [41] and API-Bank [43] are two noteworthysystems that use LLMs to pick which APIs to use from a large set of available APIs and formulate validqueries to the chosen API. Since the action module is responsible for most of the external effects of anautonomous agent, care should be taken in picking which functionality is made automatically available tothe agent without human oversight. While getting weather information or modifying a database can berelatively safe, it is still a touch too early to give an agent the ability to launch nuclear weapons.

4 Discussion and Conclusion
The previous sections described large language models and trends in autonomous agents in some detail. Thissection will conclude by pointing out some prevalent themes in the research and discussing some possiblefuture trends in the field.
A major theme in the research so far has been the great value of utilizing LLMs relatively frequently duringthe operation of an autonomous agent. The use of an LLM is analogous to thinking for the agents and if theagent “thinks” at each step of the plan, after the output of an action, and frequently at critical points, the endresult seems to improve significantly. Such frequent use of LLMs might also be an antidote to the seriousproblem of error propagation, which refers to the agent making an error at a certain stage and having itssubsequent steps steadily diverge from useful paths [41]. The obvious downside to using LLMs at everyopportunity is that they are still relatively expensive to run. Error propagation and various other modes offailure during the operation of the agent, such as problems interfacing with external tools due to wrongparameters or invalid JSON, also depend on the quality and correctness of LLMs. As better and cheaper arecreated over time, autonomous agents will become much more robust and new avenues of planning andexecuting will be unlocked.
Another theme with most deep learning research so far and especially prominent in autonomous agents hasbeen the obvious analogies with the human brain. The fundamental deep learning building blocks such asartificial neural networks, the activation functions therein, and attention are inspired by biological constructs.Additionally, the overall architecture of the agent has a lot of similarities with a model of the human brain.Planning, for example, can be seen as standing for the prefrontal cortex and long term memory reminds oneof the hippocampus. The analogy will likely persist and future innovations will draw heavily from the humanbrain functionality that is so far missing from AI systems. Some candidates are creativity, habit formation,spatial reasoning, and sensory information. Multimodal agents, in particular, seem like one of the nearestinnovations and they will enable systems that can more easily interact with the environment with the helpof a broad range of sensors.
As autonomous agents have evolved from experimental constructs to systems with real value to users, weare likely to see a widespread use in some commercial areas such as customer support. This will createopportunities for agents to reflect on and learn from previous experience, using frameworks like Reflexion[40]. Such real-world feedback might accelerate the improvement of agents considerably. Even morecomplex scenarios might arise when cooperation with humans and other autonomous agents with differentspecializations is allowed. Naturally, such working models would also necessitate guarding against risks asautonomous agents might interact with each other in unpredictable ways and humans can provide adversarialinput. Particular attention should be paid to the use of external tools as this part of the autonomous agentshas the potential to cause most harm. Human oversight is likely to remain necessary for any action that hasthe potential to cause undesirable effects.
This paper described large language models and how autonomous agents leverage these models to undertakecomplex tasks with enhanced capability and robustness. The analogy between the autonomous agentsdescribed and the human brain is apparent and many applications are on the road to approach human-likeperformance even if in limited settings. Thus, LLM-based autonomous agents constitute a seemingly viablepath to AI systems with high real-world value and, eventually, artificial general intelligence.
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